

LSIC Excavation and Construction Focus Group http://lsic.jhuapl.edu/

December 4, 2020 (November Meeting)

Dr. Athonu Chatterjee

Friendly Reminders

Slides, chat and recording will be posted in our website.
(http://lsic.jhuapl.edu/Focus-Areas/Excavation-and-Construction.php)

- Feel free to post your questions/suggestions in 'chat'.
 - We can move the discussion to Confluence.

Please mute yourself if you are not speaking.

Focus Group Update

- December meeting cancelled.
 - Falls on the 25th.

- Next monthly meeting on January 29th, 2021.
 - Emailing me is always an option.
 - Confluence.

Focus Group Update

- Use *Confluence* for technical discussions, sharing resources, seeking feedback from the community,----.
 - http://lsic-wiki.jhuapl.edu/ (sign-up required)
 - Contact Andrea Herman for access: ams573@alumni.psu.edu

 LSIC Executive Committee: 15 Members (see December newsletter)

Funding Opportunities

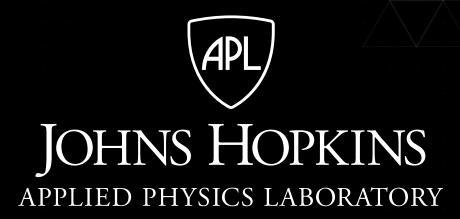
Break the Ice Lunar Challenge

Excavate icy regolith and deliver acquired resources in extreme lunar conditions.

- https://breaktheicechallenge.com/
- Information webinar session on Tuesday, December 8th, 4:30 PM Eastern.

Other Opportunities

- Dust Mitigation Technologies for Lunar Applications (http://bigidea.nianet.org/2021-challenge/)
- Watts on the Moon Centennial Challenge
 https://www.nasa.gov/directorates/spacetech/centennial_challenges/watts-on-the-moon/index.html)



Agenda

• Prof. Clive Neal (University of Notre Dame) will present a preliminary report on the findings of the recently conducted ASCEND workshop, **Sustainable Lunar Presence: Infrastructure to Stay**. (~10 minutes)

• Dr. Greg Baiden will share his knowledge and vision of *Underground Construction and Mining: Terrestrial and Lunar Applications*. Dr. Baiden is the CTO of Penguin Autonomous Systems Inc., which is a company developing robotic solutions for mining and other industries. He is the author of the Canadian Space Agency strategic plan for Mining the Moon. (~30 minutes)

E&C Technical Areas Google Survey Results

Habitat construction in lunar conditions. (Inflatable habitat, underground habitat, radiation shielding, multi-functional materials/structures)	70.5%
Manufacturing processes for lunar construction. (Additive manufacturing, sintering, regolith fiber pulling)	63.6%
Excavation technology for hard regolith/icy material. (Drilling, mining, lightweight construction equipment)	61.4%
Autonomous vehicles and robots for E&C on lunar surface.	59.1%
Lunar surface structure development. (Landing pads, berms, roads)	54.5%
Increased autonomy of operations.	34.1%
Virtual lunar terrain simulation.	29.5%
Beyond additive technology.	22.7%
Long duration robust, easily maintainable robot design for industrial scale use (not science)	2.3%
Subsurface and interior imaging and composition analysis	2.3%
Compressed, sifted regolith as a building material	2.3%
Spacecraft refueling station development	2.3%

LSII System Integrator - APL

A key tenet of LSII is to implement a multitude of novel collaborations across industry, academia, and government in order to successfully develop the transformative capabilities for lunar surface exploration.

Origin of the APL Task

- NASA was investigating using a University Affiliated Research Center (UARC) to bring efficiencies to development
- LSII initiated a tasked APL, to assess system integration role for the Lunar Surface Innovation Initiative
- APL established a Lunar Surface Consortium with academia and industry representatives, as well as NASA experts, that span a broad range of capabilities to execute timely studies, tasks, and/or acquisitions

The Consortium will assist NASA in

- Identifying lunar surface technology needs and assessing the readiness of relative systems and components
- Making recommendations for a cohesive, executable strategy for development and deployment of the technologies required for successful lunar surface exploration
- Providing a central resource for gathering information, analytical integration of lunar surface technology demonstration interfaces, and sharing of results

