# Lunar Surface Innovation <br> <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">C</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">N</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">S</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">O</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">R</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">T</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">I</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">U</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">M</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| C | 0 | N | S | O | R | T | I | U | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |</table-markdown></div> 

## LSIC Excavation and Construction Focus Group

 http://lsic.jhuapl.edu/
## December 4, 2020 (November Meeting)

Dr. Athonu Chatterjee
Athonu.Chatterjee@jhuapl.edu

JOHNS HOPKINS
APPLIED PHYSICS LABORATORY

## Lunar Surface Innovation

 $\begin{array}{llllllllll}\text { C } & 0 & \mathrm{~N} & 5 & 0 & \text { A } & \text { T } & \text { I } & \text { U }\end{array}$
## Friendly Reminders

- Slides, chat and recording will be posted in our website. (http:///sic.ihuapl.edu/Focus-Areas/Excavation-and-Construction.php)
- Feel free to post your questions/suggestions in 'chat'.
- We can move the discussion to Confluence.
- Please mute yourself if you are not speaking.
-December meeting cancelled.
-Falls on the $25^{\text {th }}$.
- Next monthly meeting on January 29 ${ }^{\text {th }}, 2021$.
-Emailing me is always an option.
- Confluence.


## Focus Group Update

- Use Confluence for technical discussions, sharing resources, seeking feedback from the community,----.
- http://lsic-wiki.jhuapl.edu/ (sign-up required)
- Contact Andrea Herman for access: ams573@alumni.psu.edu
- LSIC Executive Committee: 15 Members (see December newsletter)


## Lunar Surface Innovation

## 

## Break the Ice Lunar Challenge

Excavate icy regolith and deliver acquired resources in extreme lunar conditions.

- https://breaktheicechallenge.com/
- Information webinar session on Tuesday, December 8th, 4:30 PM Eastern.


## Other Opportunities

- Dust Mitigation Technologies for Lunar Applications (http://bigidea.nianet.org/2021challenge/)
- Watts on the Moon Centennial Challenge
(https://www.nasa.gov/directorates/spacetech/centennial challenges/watts-on-themoon/index.html)


## Agenda

- Prof. Clive Neal (University of Notre Dame) will present a preliminary report on the findings of the recently conducted ASCEND workshop, Sustainable Lunar Presence: Infrastructure to Stay. (~10 minutes)
- Dr. Greg Baiden will share his knowledge and vision of Underground Construction and Mining: Terrestrial and Lunar Applications. Dr. Baiden is the CTO of Penguin Autonomous Systems Inc., which is a company developing robotic solutions for mining and other industries. He is the author of the Canadian Space Agency strategic plan for Mining the Moon. (~30 minutes)
(4)

JOHNS HOPKINS<br>APPLIED PHYSICS LABORATORY

\section*{Lunar Surface Innovation <br> | C | 0 | N | 5 | 0 | h | T | I | U | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | <br> E\&C Technical Areas Google Survey Results}


| Habitat construction in lunar conditions. (Inflatable habitat, underground habitat, radiation shielding, multi- <br> functional materials/structures) | $70.5 \%$ |
| :--- | :--- |
| Manufacturing processes for lunar construction. (Additive manufacturing, sintering, regolith fiber pulling) | $63.6 \%$ |
| Excavation technology for hard regolith/icy material. (Drilling, mining, lightweight construction equipment) | $61.4 \%$ |
| Autonomous vehicles and robots for E\&C on lunar surface. | $59.1 \%$ |
| Lunar surface structure development. (Landing pads, berms, roads) | $54.5 \%$ |
| Increased autonomy of operations. | $34.1 \%$ |
| Virtual lunar terrain simulation. | $29.5 \%$ |
| Beyond additive technology. | $22.7 \%$ |
| Long duration robust , easily maintainable robot design for industrial scale use (not science) | $2.3 \%$ |
| Subsurface and interior imaging and composition analysis | $2.3 \%$ |
| Compressed, sifted regolith as a building material | $2.3 \%$ |
| Spacecraft refueling station development | $2.3 \%$ |

## LSII System Integrator - APL

A key tenet of LSII is to implement a multitude of novel collaborations across industry, academia, and government in order to successfully develop the transformative capabilities for lunar surface exploration.

## Origin of the APL Task

- NASA was investigating using a University Affiliated Research Center (UARC) to bring efficiencies to development
- LSII initiated a tasked APL, to assess system integration role for the Lunar Surface Innovation Initiative
- APL established a Lunar Surface Consortium with academia and industry representatives, as well as NASA experts, that span a broad range of capabilities to execute timely studies, tasks, and/or acquisitions


## The Consortium will assist NASA in

- Identifying lunar surface technology needs and assessing the readiness of relative systems and components
- Making recommendations for a cohesive, executable strategy for development and deployment of the technologies required for successfullunar surface, exploration
- Providing a central resource for gathering information; analytical-integration of lunar surface technology demonstration interfaces and sharing efresults

